A ug 2 01 0 Approaching optimality for solving SDD linear systems ∗

نویسندگان

  • Ioannis Koutis
  • Gary L. Miller
  • Richard Peng
چکیده

We present an algorithm that on input of an n-vertex m-edge weighted graph G and a value k, produces an incremental sparsifier Ĝ with n− 1+m/k edges, such that the condition number of G with Ĝ is bounded above by Õ(k log n), with probability 1− p. The algorithm runs in time Õ((m logn+ n log n) log(1/p)). As a result, we obtain an algorithm that on input of an n × n symmetric diagonally dominant matrix A with m non-zero entries and a vector b, computes a vector x satisfying ||x − Ab||A < !||Ab||A, in expected time Õ(m log n log(1/!)). The solver is based on repeated applications of the incremental sparsifier that produces a chain of graphs which is then used as input to a recursive preconditioned Chebyshev iteration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 Approaching optimality for solving SDD linear systems ∗

We present an algorithm that on input a graph G with n vertices and m+ n− 1 edges and a value k, produces an incremental sparsifier Ĝ with n − 1 +m/k edges, such that the condition number of G with Ĝ is bounded above by Õ(k log n), with probability 1− p. The algorithm runs in time Õ((m log n+ n log n) log(1/p)). As a result, we obtain an algorithm that on input an n × n symmetric diagonally dom...

متن کامل

0 A ug 2 01 6 SPECTRAL CLUSTER BOUNDS FOR ORTHONORMAL SYSTEMS AND OSCILLATORY INTEGRAL OPERATORS IN SCHATTEN SPACES

We generalize the L spectral cluster bounds of Sogge for the Laplace–Beltrami operator on compact Riemannian manifolds to systems of orthonormal functions. The optimality of these new bounds is also discussed. These spectral cluster bounds follow from Schatten-type bounds on oscillatory integral operators.

متن کامل

Smaller Steps for Faster Algorithms : A New Approach to Solving Linear Systems

In this thesis we study iterative algorithms with simple sublinear time update steps, and we show how a mix of of data structures, randomization, and results from numerical analysis allow us to achieve faster algorithms for solving linear systems in a variety of different regimes. First we present a simple combinatorial algorithm for solving symmetric diagonally dominant (SDD) systems of equati...

متن کامل

A new approach to fuzzy quantities ordering based on distance method and its applications for solving fuzzy linear programming

Many ranking methods have been proposed so far. However, there is yet no method that can always give a satisfactory solution to every situation; some are counterintuitive, not discriminating; some use only the local information of fuzzy values; some produce different ranking for the same situation. For overcoming the above problems, we propose a new method for ranking fuzzy quantities based on ...

متن کامل

Asymptotic optimality of sparse linear discriminant analysis with arbitrary number of classes

Many sparse linear discriminant analysis (LDA) methods have been proposed to overcome the major problems of the classic LDA in high-dimensional settings. However, the asymptotic optimality results are limited to the case that there are only two classes, which is due to the fact that the classification boundary of LDA is a hyperplane and explicit formulas exist for the classification error in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011